SaskRB Modeling:
A multi-objective calibration approach Identification of hydrologic models using streamflow and Satellite water storage data
F.A. Yassin, H.S. Wheater, Saman Razavi

CCRN Modelling Workshop (Modelling Change in Cold Regions)
Motivation
• Challenges in finding unique acceptable parameter estimates
• High uncertainties in flux and state variable estimations of hydrological modeling

Objective
• MESH Model parametrization with a multiobjective calibration approach that incorporate multiple metrics of streamflow and other independent variable observations
Case study area

- SaskRB Watershed area: 405,864 km2
- Battle Watershed area: \approx30,000 km2
- Vermilion Watershed area: \approx8,000 km2
- Precipitation: up to 1500mm in the Rockies and 300-500mm in prairies
- DEM: 1:250,000 (Geobase Canada and USGS)
GRACE Total Water Storage (TWS) anomaly

- Gravity Recovery and Climate Experiment (GRACE), delivers monthly averages of the spherical harmonic coefficients describing the Earth’s gravity field, from which we infer time-variable changes in mass, averaged over arbitrary regions having length scales of few hundred kilometres to accuracies 1cm of equivalent water thickness.
- Monthly variation related to surface storage, soil moisture storage, groundwater changes, and Post Glacial Rebound
- We adopted GRACE TWS processed by Natural Resource Canada as in (Lambert et al., 2013) (Glacial Isostatic Adjustment (GIA) correction and filtering technique that that retain more signals)

GRACE satellite (Photo credit: NASA)

- **GRACE Monthly Storage Anomaly (mm) 01-2003**
- **GRACE BattleRB Total Water Storage Anomaly**

Swenson, 2012; Landerer and Swenson, 2012; Swenson and Wahr, 2006;
Soil and Landcover

Source: Soil landscape of Canada

Land cover data from the Canada Center for Remote Sensing (CCRS)
Calibration parameters

<table>
<thead>
<tr>
<th>No</th>
<th>Parameters</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 & 6</td>
<td>LAMX</td>
<td>Max LAI for grass and cropland resp.</td>
<td>3.5-4.0 4.0-6.0</td>
</tr>
<tr>
<td>2,5&7</td>
<td>LNZ0</td>
<td>Nat. log roughness length for forest, grass and cropland resp.</td>
<td>0.0-0.405 -3.91- -2.5 -2.52- -1.38</td>
</tr>
<tr>
<td>1 & 4</td>
<td>LAMNG</td>
<td>Min LAI forest and cropland resp.</td>
<td>0.5-1.6 3.0-3.5</td>
</tr>
<tr>
<td>8-10</td>
<td>SANDF</td>
<td>%tage sand content of layers forest 1-3</td>
<td>20-60%</td>
</tr>
<tr>
<td>11-13</td>
<td>CLAYF</td>
<td>%tage of clay content of layers forestland 1-3</td>
<td>25-40%</td>
</tr>
<tr>
<td>14-16</td>
<td>SANDG</td>
<td>%tage of sand content of grassland layers 1-3</td>
<td>20-65%</td>
</tr>
<tr>
<td>17-19</td>
<td>CLAYG</td>
<td>%tage of clay content of grassland layers 1-3</td>
<td>15-30%</td>
</tr>
<tr>
<td>20-22</td>
<td>SANDC</td>
<td>%tage of sand content of cropland layers 1-3</td>
<td>5-45%</td>
</tr>
<tr>
<td>23-25</td>
<td>CLAYC</td>
<td>%tage of clay content of cropland layers 1-3</td>
<td>27-40%</td>
</tr>
<tr>
<td>26</td>
<td>WFR21</td>
<td>River channel roughness factor</td>
<td>0.1-1.0</td>
</tr>
<tr>
<td>27,28&29</td>
<td>BCR</td>
<td>Shape factor parameter for pareto distribution function: forest, grass and cropland</td>
<td>0.05-1.5</td>
</tr>
<tr>
<td>30,31&32</td>
<td>CMAX</td>
<td>Maximum storage parameter [m] for pareto distribution function: forest, grass and cropland</td>
<td>0.1-2.0</td>
</tr>
</tbody>
</table>
Variogram Analysis of Response Surfaces (VARS)

Response Function:

\[y = f(x) \]

where \(x = \{x_1, x_2, \ldots, x_n\} \)

Sample two points \(x^A \) and \(x^B \)

Distance: \(h = x^A - x^B \)

where \(h = \{h_1, h_2, \ldots, h_n\} \)

Variogram Function:

\[\gamma(h) = \frac{1}{2} V(y(x + h) - y(x)) \]

Covariogram Function:

\[C(h) = \frac{1}{2} \text{COV}(y(x + h), y(x)) \]

1) Direction
 Directional Variograms:
 \[\gamma(h) \rightarrow \gamma(h_1), \ldots, \gamma(h_n) \]

2) Scale \(h = \{h_1, h_2, \ldots, h_n\} \)
VARS Sensitivity analysis

STREAMFLOW NSE

TWS ANOMALY NSE

Vegetation

Soil Parameters

Routing, PDMROF

Forest Grass Cropland

Forest Grass Cropland
Multiobjective optimization

\[
\begin{align*}
\text{minimize} & \quad [f_1(x), f_2(x), \ldots, f_M(x)] \\
\text{subject to} & \quad g_i(x) \leq 0 \quad i = 1, 2, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, 2, \ldots, p \\
& \quad x = [x_1, x_2, \ldots, x_L]
\end{align*}
\]

\[f_1 = \text{Percentage Bias (Streamflow)}\]

\[PBIAS = \frac{\sum_{i=1}^{n} (Y_{i,\text{obs}} - Y_{i,\text{sim}}) \times 100}{\sum_{i=1}^{n} Y_{i,\text{obs}}}\]

\[f_3 = \text{Nash-Sutcliffe efficiency with logarithmic values (Streamflow)}\]

\[INSE = 1 - \frac{\sum_{i=1}^{n} (\log(Y_{i,\text{obs}}) - \log(Y_{i,\text{sim}}))^2}{\sum_{i=1}^{n} (\log(Y_{i,\text{obs}}) - \log(\bar{Y}_{\text{obs}}))^2}\]

\[f_2 = \text{Nash-Sutcliffe efficiency (Streamflow)}\]

\[NSE = 1 - \frac{\sum_{i=1}^{n} (Y_{i,\text{obs}} - Y_{i,\text{sim}})^2}{\sum_{i=1}^{n} (Y_{i,\text{obs}} - \bar{Y}_{\text{obs}})^2}\]

\[f_4 = \text{Nash-Sutcliffe efficiency (Storage anomaly)}\]

\[STNSE = 1 - \frac{\sum_{i=1}^{n} (ST_{i,\text{obs}} - ST_{i,\text{sim}})^2}{\sum_{i=1}^{n} (ST_{i,\text{obs}} - \bar{ST}_{\text{obs}})^2}\]
Multiobjective optimization

Multi-response MO

\[
\text{minimize } \quad [f_1(x), f_2(x), f_3(x)] \\
x \in \Theta \\
x = [x_1, x_2, \ldots, x_{32}]
\]

\[f_1 = \text{Percentage Bias (Streamflow)}\]

\[
PBIAS = \left[\frac{\sum_{i=1}^{n} (Y_{i, \text{obs}} - Y_{i, \text{sim}})^*100}{\sum_{i=1}^{n} Y_{i, \text{obs}}} \right]
\]

\[f_3 = \text{Nash- Sutcliffe efficiency with logarithmic values (Streamflow)}\]

\[
INSE = 1 - \left[\frac{\sum_{i=1}^{n} (\log(Y_{i, \text{obs}}) - \log(Y_{i, \text{sim}}))^2}{\sum_{i=1}^{n} (\log(Y_{i, \text{obs}}) - \log(Y_{i, \text{sim}}))^2} \right]
\]

Multivariate MO

\[
\text{minimize } \quad [f_1(x), f_2(x), f_3(x), f_4(x)] \\
x \in \Theta \\
x = [x_1, x_2, \ldots, x_{32}]
\]

\[f_2 = \text{Nash-Sutcliffe efficiency (Streamflow)}\]

\[
NSE = 1 - \left[\frac{\sum_{i=1}^{n} (Y_{i, \text{obs}} - Y_{i, \text{sim}})^2}{\sum_{i=1}^{n} (Y_{i, \text{obs}} - \bar{Y}_{\text{obs}})^2} \right]
\]

\[f_4 = \text{Nash-Sutcliffe efficiency (Storage anomaly)}\]

\[
STNSE = 1 - \left[\frac{\sum_{i=1}^{n} (ST_{i, \text{obs}} - ST_{i, \text{sim}})^2}{\sum_{i=1}^{n} (ST_{i, \text{obs}} - \bar{ST}_{\text{obs}})^2} \right]
\]
Borg Multiobjective optimization

- Five random seed runs
- 40,000 evaluation

\[\epsilon_{BIAS}, \epsilon_{NSE}, \epsilon_{INSE}, \epsilon_{STNSE} = 0.001 \]
Multi-objective calibration using streamflow
Multi-objective calibration using both streamflow & TWS anomaly
Streamflow comparisons

STREAMFLOW BASED

05FE004 (Battle River near SK border Streamflow)

- Non-Dominated soil
- Obs

COMBINED STREAMFLOW & TWS ANOMALY

05FE004 (Battle River near SK border Streamflow)

- Non-Dominated soil
- Obs

Limitation

-1*NSE

www.usask.ca/water
TWS anomaly comparisons

STREAMFLOW BASED

05FE004 (Battle River near SK border Storage Anomaly)

Storage (mm)

02-2004 07-2005 11-2006 04-2008 08-2009 12-2010

month-year

COMBINED STREAMFLOW & TWS ANOMALY

05FE004 (Battle River near SK border Storage Anomaly)

Storage (mm)

02-2004 07-2005 11-2006 04-2008 08-2009 12-2010

month-year

Limitation

-1*NSE

streamflow streamflow & storage

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

-0.45 -0.5 -0.55 -0.6 -0.65 -0.7 -0.75 -0.8 -0.85 -0.9 -0.95 -1

www.usask.ca/water
Parameter Uncertainties

STREAMFLOW BASED

- \(PBIAS \leq 5 \& \)
- \(NSE \geq 0.5 \& \)
- \(lNSE \geq 0.5 \)

COMBINED STREAMFLOW & TWS ANOMALY BASED

- \(PBIAS \leq 5 \& \)
- \(NSE \geq 0.5 \& \)
- \(lNSE \geq 0.5 \& \)
- \(STNSE \geq 0.5 \)
Validation on Vermilion River streamflow

STREAMFLOW BASED

05EE007 (Vermilion River near MARWAYNE)

COMBINED STREAMFLOW & TWS ANOMALY

05EE007 (Vermilion River near MARWAYNE)
Ongoing Testing on MODIS based ET, TWS and streamflow

Multivariate MO

\[
\begin{align*}
\text{minimize} \quad & \left[f_1(x), f_2(x), f_3(x), f_4(x), f_5(x) \right] \\
x & \in \Theta \\
x & = [x_1, x_2, \ldots, x_{32}]
\end{align*}
\]
Water means the WORLD to Us...

Global Institute for Water Security
www.usask.ca/water
Alternative calibration strategy

GRACE BattleIRB Total Water Storage Anomaly

\[
PF(i) = \begin{cases}
0 & \text{Errbound}(i)_L \leq \text{Stosim}(i) \leq \text{Errbound}(i)_U \\
|\text{Stosim}(i) - \text{Errbound}(i)_L|^n & \text{Stosim}(i) < \text{Errbound}(i)_L \\
|\text{Stosim}(i) - \text{Errbound}(i)_U|^n & \text{Stosim}(i) > \text{Errbound}(i)_U
\end{cases}
\]

Objective fun

\[
\text{Objective fun} = \sum_{i=n}^{nobs} PF(i)
\]
Multi-objective calibration using both streamflow & TWS anomaly