Linking Hydrology and Vegetation Dynamics in the Southern Boreal Forest

Omer Yetemen1, Andrew Ireson1, Jill Johnstone1,2 and Alan G. Barr3

1. Global Institute for Water Security, University of Saskatchewan
2. Department of Biology, University of Saskatchewan
3. Environment Canada
Outline:

- Research questions
- Observations from the southern boreal forest
 - Stand-level
 - Hillslope-scale
 - Ecozone-level
- CLASS-CTEM modeling framework
Research Questions:

- How will climate change (changes in temperature and moisture) alter the vegetation dynamics of the southern boreal forest?
- What will be the role of hydrology in mediating change?
- What will be the controlling ecohydrologic processes at stand, hillslope-landscape, and ecozone scales?
Observations from the southern boreal forest:

- What are the ecohydrologic characteristics of the southern boreal forest? *Does scale matter?*
 - Stand-level
 - Hillslope-scale
 - Ecozone-level
Stand-level: Interannual Variability

Flux towers shows:

- Wet year fosters growth indicates **water limitation**
- Vegetation *responds* to drought or wet years *differently*.

Zha et al., 2013
Local topography and geology:
- Defines soil texture and drainage.
- Constrains the vegetation mosaic.

Hillslope-scale: Vegetation Pattern

Glacial till deposits

- High ET
- Moderate ET
- High ET

Lowland
- Coniferous canopy
- Precipitation feeds wetlands
- Shallow soil drainage to deep water table
- Wetlands feed local GW

Upland
- Deciduous canopy
- Clay rich soil with preferential flow paths
- Shallow water table

Fen/bog

Potential transmissive zone with episodic lateral flow
Shallow GW with negligible flow

Glaciofluvial deposits

- Low ET
- Moderate ET
- High ET

Lowland
- Coniferous canopy
- GW feeds wetlands
- Wetlands may drain to stream network

Upland
- Coniferous canopy
- Shallow soil over sand
- High soil drainage to fen

Deep, fast, sustained GW flow

Ireson et al., in preparation
Ecozone-level: Vegetation Distribution

The ecotone in western Canada is:

- Coincident with the P-PET isolines (CMI)
- Makes it sensitive to climate change.

\[CMI = P - PET \]

Climate Moisture Index (cm)

Precipitation

Pot. Evapotranspiration

Hogg, 1994
Addressing Research Questions:

- How will climate change (changes in temperature and moisture) alter the vegetation dynamics of the southern boreal forest?
- What will be the role of hydrology in mediating change?
- What will be the controlling ecohydrologic processes at stand, hillslope-landscape, and ecozone scales?
CLASS – CTEM Modelling Framework: Carbon, water and energy cycles

Carbon, energy, water balances

- Albedo and transmittivity calculations
- Photosynthesis, leaf respiration, and canopy conductance
- Surface energy and water balance
- Soil heat and moisture dynamics

Canopy conductance

\[\Delta t = 30 \text{ minutes} \]

CLASS

- Autotrophic respiration
- Heterotrophic respiration
- Phenology
- Turnover, Mortality
- Allocation
- Fire
- Conversion of biomass to structural attributes
- Competition between PFTs
- Land use change

\[\Delta t = 1 \text{ day} \]

CTEM

Arora, 2002

Carbon, energy, and water balance in CTEM
- Seasonal phenology
- Interannual variations
- Species-specific stress effects

Verseghy and Arora, Environment Canada

www.usask.ca/water
Competition Among Plant Functional Types

200-yr run for a boreal forest in Siberia:

<table>
<thead>
<tr>
<th>PFT</th>
<th>Observation (%)</th>
<th>CTEM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle leaf Evergreen</td>
<td>9.1</td>
<td>5.05</td>
</tr>
<tr>
<td>Needle leaf Deciduous</td>
<td>64.5</td>
<td>53.7</td>
</tr>
<tr>
<td>Broadleaf Deciduous Cold</td>
<td>5.0</td>
<td>4.3</td>
</tr>
<tr>
<td>C3 Grass</td>
<td>10.95</td>
<td>28.2</td>
</tr>
<tr>
<td>Bare</td>
<td>9.75</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Arora and Boer, 2006
References

Water means the WORLD to Us...

University of Saskatchewan
Global Institute for Water Security
www.usask.ca/water